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Abstract. We analytically derive the transition probabilities for four-neutrino oscillations in matter. The
time-evolution operator giving the neutrino oscillations is expressed by a finite sum of terms up to the
third power of the Hamiltonian in a matrix form, using the Cayley–Hamilton theorem. The result of the
computation for the probabilities in some mass patterns tells us that it is actually difficult to observe the
resonance between one of the three active neutrinos and the fourth (sterile) neutrino near the earth, even
if the fourth neutrino exists.

1 Introduction

A neutrino oscillation is a transition among neutrino fla-
vors. Several types of the observations tell us that neutrino
oscillations occur [1–8]. They are classified in solar, atmo-
spheric and LSND experiments.

The mass squared differences are the parameters show-
ing the neutrino oscillations. In order to describe three
kinds of neutrino experiments within one framework, three
kinds of mass squared differences are needed. Therefore
we consider the four-neutrino oscillation, where the fourth
neutrino does not have the weak interaction. Three active
neutrino flavors (νe, νµ, ντ ) interact with leptons in the
weak interaction. So the fourth neutrino is called a sterile
neutrino (νs).

Recent analysis of experiments and observations disfa-
vors the four neutrino flavors [9,10]. The possibility of the
oscillations νe → νs and νµ → νs are strongly excluded
by the analysis. However, the result of the LSND experi-
ment causes the maximum of the three mass squared dif-
ferences, and gives grounds for four-neutrino models. The
upcoming MiniBooNE experiments [11] may lead to a con-
clusion about this discrepancy. Whatever conclusion the
experiment leads to, it is useful to consider the neutrino
oscillations with the sterile neutrino in conditions differ-
ent from that of the experiment. We calculate the matter
effects for the four-neutrino oscillation in the analytical
formalism, irrespective of the concrete data of recent ex-
periments. The result of the calculation will give a new
point of view of the four neutrino flavors.

The neutrino oscillation pattern in vacuum can get
modified when the neutrinos pass through matter. This
is known as the Mikheyev–Smirnov–Wolfenstein (MSW)
effect [12], which can be described by an effective Hamilto-
nian. The interaction with the neutral currents occurs for
three active neutrinos. Thus, for the three active neutri-
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nos, one does not need to consider the interaction with the
neutral currents [13]. But the sterile neutrino has neither
the charged- nor the neutral-current interactions. This
means that one needs to consider the effect of the matter
interacting with the sterile neutrino and to introduce the
4×4 mixing matrix of four neutrinos which is an extension
of the 3 × 3 Maki–Nakagawa–Sakata (MNS) matrix [14].

Analytical calculations of active three-neutrino oscil-
lations in matter have been performed [15]. In this article,
we derive analytically the transition probabilities for four-
neutrino oscillations. Our calculations include the effects
of the interaction with charged and neutral currents.

The outline of the article is as follows. In Sect. 2, two
kinds of bases to express four-neutrino states are intro-
duced. These bases are connected by a mixing matrix.
To describe neutrino oscillations in matter, the effective
Hamiltonian with a charged current and a neutral current
is introduced. In Sect. 3, we calculate the transition prob-
abilities from the effective Hamiltonian. In order to derive
the transition probabilities, we make use of the Cayley–
Hamilton theorem and the formula for the root of the bi-
quadratic equation. In Sect. 4, the transition probabilities
are concretely computed in two cases of the four-neutrino
oscillation schemes. Finally, in Sect. 5, we discuss the ef-
fects of four-neutrino oscillations in matter.

2 Formalism

2.1 Two bases and the mixing matrix

Neutrinos are produced in the flavor eigenstates |να〉 (α =
e, µ, τ, s). Between the source and the detector, the neutri-
nos evolve as mass eigenstates |νa〉 (a = 1, 2, 3, 4). There
are two kinds of eigenstates: |να〉 and |νa〉. These eigen-
states are defined by neutrino fields να and νa correspond-
ing to each eigenstate: ν†|0〉 ≡ |ν〉, |να〉 ≡ |α〉, |νa〉 ≡ |a〉,
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U =




C12C13C14 C13C14S12 C14S13 S14

−C23C24S12

−C12C24S13S23

−C12C13S14S24

C12C23C24

−C24S12S13S23

−C13S12S14S24

C13C24S23

−S13S14S24
C14S24

−C12C23C34S13

+C34S12S23

−C12C13C24S14S34

+C23S12S24S34

+C12S13S23S24S34

−C23C34S12S13

−C12C34S23

−C13C24S12S14S34

−C12C23S24S34

+S12S13S23S24S34

C13C23C34

−C24S13S14S34

−C13S23S24S34

C14C24S34

−C12C13C24C34S14

+C23C34S12S24

+C12C34S13S23S24

+C12C23S13S34

−S12S23S34

−C13C24C34S12S14

−C12C23C34S24

+C34S12S13S23S24

+C23S12S13S34

+C12S23S34

−C24C34S13S14

−C13C34S23S24

−C13C23S34

C14C24C34




. (11)

where the vacuum state is given by |0〉. In the present
analysis, we will use the plane wave approximation of
the fields. In this approximation, the neutrino flavor field
να is expressed by a linear combination of neutrino mass
fields νa:

να =
4∑

a=1

Uαaνa, (1)

where U is a 4 × 4 unitary matrix with the elements Uαa.
If we write this relation in the neutrino eigenstates, then

|α〉 =
4∑

a=1

U∗
αa|a〉. (2)

An arbitrary neutrino state ψ is expressed in both the
flavor and mass bases by

ψ ≡
∑

α=e,µ,τ,s

ψα|α〉 =
∑

α=e,µ,τ,s

ψα

4∑
a=1

U∗
αa|a〉

=
4∑

a=1

( ∑
α=e,µ,τ,s

ψαU
∗
αa

)
|a〉 =

4∑
a=1

ψa|a〉, (3)

where ψα and ψa are the components of ψ of the flavor
eigenstate basis and the mass eigenstate basis, respec-
tively. They are related:

ψa =
∑

α=e,µ,τ,s

U∗
αaψα. (4)

If we define the matrix elements by

ψf = (ψα) =



ψe

ψµ

ψτ

ψs


 , ψm = (ψa) =



ψ1

ψ2

ψ3

ψ4


 , (5)

U = (Uαa) =



Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4


 , (6)

the relation between the flavor and the mass eigenstates
is 


νe

νµ

ντ

νs


 =



Ue1 Ue2 Ue3 Ue4

Uµ1 Uµ2 Uµ3 Uµ4

Uτ1 Uτ2 Uτ3 Uτ4

Us1 Us2 Us3 Us4





ν1
ν2
ν3
ν4


 . (7)

The unitary matrix U is the mixing matrix of four neu-
trinos. There are six mixing angles and three phases that
are parameters of U , in the case of four neutrinos. In this
analysis, we ignore the CP violation by putting the phases
equal to zero. Then U is a real orthogonal matrix [15].

A parameterization for U = U(θ12, θ13, θ14, θ23, θ24,
θ34) is given by

U = U34U24U14U23U13U12, (8)

where the matrix elements are

(Uij)ab = δab + (Cij − 1)(δiaδib + δjaδjb)
+ Sij(δiaδjb − δjaδib), (9)

Cij = cos θij , Sij = sin θij , (10)

and the mixing angles θ12, θ13, θ14, θ23, θ24, θ34 [16,17]. By
this definition, the mixing matrix becomes (11) (see (11)
on top of the page).

2.2 Hamiltonian in matter

In the mass eigenstate basis, the Hamiltonian H0 partici-
pating in the propagation of neutrinos in vacuum is given
by
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H0 =



E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4


 , (12)

where Ea (a = 1, 2, 3, 4) are the energies of the neutrino
mass eigenstates |a〉 with mass ma:

Ea =
√
ma

2 + p2. (13)

Here and hereafter we assume the momentum p to be the
same for all mass eigenstates.

There are two kinds of additional potentials for de-
scribing the interactions between neutrinos and matter.
One is the interaction of the charged particles (electrons)
and its neutrino νe:

Ve =
√

2GF diag(Ne, 0, 0, 0). (14)

The other is the interaction of the neutral particles (e.g.
the neutron) and active neutrinos (νe, νµ, ντ ):

Vn0 =
√

2GF diag
(

−1
2
Nn,−1

2
Nn,−1

2
Nn, 0

)
, (15)

where GF, Ne and Nn are the Fermi weak coupling con-
stant, the electron number density and the neutral parti-
cle number density, respectively. Note that we assume the
particle number densities to be constant throughout the
matter where the neutrinos are propagating.

The interaction term (15) can be separated into two
parts as follows:

Vn0 = Vn + V ′, (16)

Vn =
√

2GF diag
(

0, 0, 0,+
1
2
Nn

)
, (17)

V ′ =
√

2GF diag
(

−1
2
Nn,−1

2
Nn,−1

2
Nn,−1

2
Nn

)
. (18)

These interaction terms are written by the flavor eigen-
state basis. Therefore the interaction terms in the flavor
eigenstate basis must be transformed into those in the
mass eigenstate basis by the mixing matrix U . The inter-
action terms in the mass eigenstate basis are

U−1VeU = Ae




U2
e1 Ue1Ue2 Ue1Ue3 Ue1Ue4

Ue2Ue1 U2
e2 Ue2Ue3 Ue2Ue4

Ue3Ue1 Ue3Ue2 U2
e3 Ue3Ue4

Ue4Ue1 Ue4Ue2 Ue4Ue3 U2
e4


 , (19)

U−1VnU = An




U2
s1 Us1Us2 Us1Us3 Us1Us4

Us2Us1 U2
s2 Us2Us3 Us2Us4

Us3Us1 Us3Us2 U2
s3 Us3Us4

Us4Us1 Us4Us2 Us4Us3 U2
s4


 , (20)

U−1V ′U = −AnI, (21)

where I is the 4 × 4 unit matrix, and the matter densities
Ae, An and A are defined by

Ae =
√

2GFNe ≡ A, (22)

An =
1√
2
GFNn =

1
2
A
Nn

Ne
. (23)

Thus, the Hamiltonian in the case when the neutrinos
propagate in matter is

Hm = H0 + U−1VeU + U−1VnU −AnI. (24)

3 Calculations
of the neutrino transition probabilities

The transition probabilities are represented by the time-
evolution operator. In the flavor state basis, the unitary
transformation from the initial state ψf (t = 0) to the final
state ψf (t) is given by the operator

Uf (t) ≡ Uf (t, 0), (25)

where Uf (t2, t1) is the time-evolution operator from time
t1 to t2 in the flavor state basis. The Hamiltonian Hflavor
in the flavor state basis is represented by using the mixing
matrix U and the Hamiltonian Hm in the mass state basis:

Hflavor = UHmU
−1. (26)

The Schrödinger equation in the mass eigenstate basis is

i
d
dt
ψm(t) = Hmψm(t). (27)

Equation (27) has the solution

ψm(t) = e−iHmtψm(0), (28)

where e−iHmt is the time-evolution operator. Inserting t =
L into (28), the solution of the Schrödinger equation (27)
is

ψm(L) = ψm(t)
∣∣∣
t=L

= e−iHmLψm(0) ≡ Um(L)ψm(0),

(29)
where L stands for the distance through which neutrinos
run in the time t, because the speed of neutrinos is almost
equal to that of light.

The neutrino state ψf (L) at t = L in the flavor state
basis is expressed by

ψf (L) = Uψm(L)

= Ue−iHmLψm(0)

= Ue−iHmLU−1ψf (0)
≡ Uf (L)ψf (0). (30)

3.1 Traceless matrix T

In order to find the explicit form of the time-evolution op-
erator e−iHmt, which is the exponential of the matrix, the
Hamiltonian in the matrix form is separated into diagonal
and traceless matrices. The trace of the matrix Hm in (24)
is

trHm = E1 + E2 + E3 + E4 +Ae − 3An, (31)
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where we use the unitarity conditions, e.g. Ue1
2 + Ue2

2 +
Ue3

2 + Ue4
2 = 1.

An arbitrary N ×N matrix M can always be written
as

M = M0 +
1
N

(trM)IN , (32)

where M0 and IN are N ×N traceless and unit matrices,
respectively. Note that trM0 = 0. Then the 4 × 4 matrix
Hm can be written as

Hm = T +
1
4
(trHm)I, (33)

where I4 = I and the matrix T is traceless. The matrix T
can be written as

T = H0 − 1
4
(E1 + E2 + E3 + E4)I + U−1VeU + U−1VnU

− 1
4
(Ae +An)I

=
1
4



E1,234 0 0 0

0 E2,134 0 0
0 0 E3,124 0
0 0 0 E4,123




+ Ae




Ue1
2 − 1

4
Ue1Ue2 Ue1Ue3 Ue1Ue4

Ue2Ue1 Ue2
2 − 1

4
Ue2Ue3 Ue2Ue4

Ue3Ue1 Ue3Ue2 Ue3
2 − 1

4
Ue3Ue4

Ue4Ue1 Ue4Ue2 Ue4Ue3 Ue4
2 − 1

4




+ An




Us1
2 − 1

4
Us1Us2 Us1Us3 Us1Us4

Us2Us1 Us2
2 − 1

4
Us2Us3 Us2Us4

Us3Us1 Us3Us2 Us3
2 − 1

4
Us3Us4

Us4Us1 Us4Us2 Us4Us3 Us4
2 − 1

4



, (34)

where Eab (a, b = 1, 2, 3, 4, a �= b) and Ek,lmn (k, l,m, n =
1, 2, 3, 4) are defined by

Eab ≡ Ea − Eb, Ek,lmn ≡ Ekl + Ekm + Ekn, (35)

respectively. The energy differences Eab are not linearly
independent, since they obey the following relations:

Eab = −Eba, E12 + E23 + E31 = 0,
E12 + E24 + E41 = 0, E13 + E34 + E41 = 0.

Thus, only three of the Eabs are linearly independent.
Therefore the time-evolution operator e−iHmt can be

rewritten using the traceless matrix T :

Um(L) = e−iHmL = φe−iTL, (36)

where φ = e−i(trHm)L/4 is a phase factor.

3.2 The Cayley–Hamilton theorem

In order to find the concrete form of the definite matrix
e−iTL, we use the Cayley–Hamilton theorem. The expo-
nential of the 4×4 matrix T can be expressed by an infinite
series:

e−iTL = k0I + k1T + k2T
2 + k3T

3 + k4T
4 + · · · (37)

where kn = (−iL)n
/n! (n = 1, 2, 3, 4, · · · ). The Cayley–

Hamilton theorem implies that the eigenvalue λ in the
characteristic equation

det(T − λI4) = λ4 + c3λ
3 + c2λ

2 + c1λ+ c0 = 0 (38)

of the matrix T can be replaced with T to give

T 4 + c3T
3 + c2T

2 + c1T + c0 = 0, (39)

where the cj (j = 0, 1, 2, 3) are coefficients. Using (39)
repeatedly, the matrix e−iTL can formally be written in
the form

e−iTL = a0I + a1T + a2T
2 + a3T

3, (40)

where the aj (j = 0, 1, 2, 3) are coefficients which differ
from kn and cj in general.

Because T is a definite matrix, we need to find the coef-
ficients aj explicitly in order to obtain the matrix e−iTL.
If the characteristic equation (38) has four solutions λk

(k = 1, 2, 3, 4), one can write the eigenvalues of e−iTL as

e−iλkL = a0 + a1λk + a2λk
2 + a3λk

3. (41)

By defining the following matrices,

e =




e−iLλ1

e−iLλ2

e−iLλ3

e−iLλ4


 ,

Λ =




1 −iLλ1 −L2λ1
2 +iL3λ1

3

1 −iLλ2 −L2λ2
2 +iL3λ2

3

1 −iLλ3 −L2λ3
2 +iL3λ3

3

1 −iLλ4 −L2λ4
2 +iL3λ4

3


 ,

a =



a0

a1

a2

a3


 , (42)

(41) is written in the matrix form e = Λa. Then one
obtains the coefficient a,

a = Λ−1e. (43)

Therefore, we should find the eigenvalues λk of the matrix
T in order to know a.
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3.3 Characteristic equation of the matrix T

In order to obtain the eigenvalues λk of the matrix T , one
must solve the characteristic equation∣∣∣∣∣∣∣∣∣

T11 − λ T12 T13 T14

T21 T22 − λ T23 T24

T31 T32 T33 − λ T34

T41 T42 T43 T44 − λ

∣∣∣∣∣∣∣∣∣
= λ4 + c3λ

3 + c2λ
2 + c1λ+ c0 = 0. (44)

The coefficient c0 is the determinant of T , c1 and c2 are
expressed by the sum of the cofactors of the diagonal ele-
ments of T , and c3 is given by the trace of T ,

c0 = detT,
c1 = −cof T(1) − cof T(2) − cof T(3) − cof T(4),

c2 = cof T(12) + cof T(13) + cof T(14) + cof T(23)

+ cof T(24) + cof T(34),

c3 = −trT = 0,

where the cofactors cof T(p) (p = 1, · · · , 4) of Tpp and
cof T(rs) (1 ≤ r < s ≤ 4) of Trr and Tss are determinants
of 3 × 3 and 2 × 2 matrices, respectively, e.g.

cof T(2) =
4∑

p1,p2,p3,p4=1

εp1p2p3p4T1p1δ2p2T3p3T4p4 ,

cof T(13) =
4∑

p1,p2,p3,p4=1

εp1p2p3p4δ1p1T2p2δ3p3T4p4 .

The four roots of the biquadratic equation (44) are
given from the solutions of the two quadratic equations [18]

X2 ± √
t0 − c2X +

t0
2

+

√
t0
2

2
− c0 = 0, (45)

where t0 is one of the real roots of the cubic equation

t3 − c2t
2 − 4c0t+ 4c0c2 − c1

2 = 0. (46)

Note that c3 = −trT = 0 due to the definition of T .

3.4 Calculation of time-evolution operator

From (36) and (40), the time-evolution operator is written
as

Um(L) = e−iHmL = φe−iTL (47)
= φ

[
a0I + (−iLT )a1 − L2T 2a2 + iL3T 3a3

]
.

The coefficients aj are given by (43), as follows:

a0 = − λ2λ3λ4

λ12λ13λ14
e−iLλ1 − λ1λ3λ4

λ21λ23λ24
e−iLλ2

− λ1λ2λ4

λ31λ32λ34
e−iLλ3 − λ1λ2λ3

λ41λ42λ43
e−iLλ4 ,

a1 =
i
L

(
λ2λ3 + λ2λ4 + λ3λ4

λ12λ13λ14
e−iLλ1

+
λ1λ3 + λ1λ4 + λ3λ4

λ21λ23λ24
e−iLλ2

+
λ1λ2 + λ1λ4 + λ2λ4

λ31λ32λ34
e−iLλ3

+
λ1λ2 + λ1λ3 + λ2λ3

λ41λ42λ43
e−iLλ4

)
,

a2 =
1
L2

(
λ2 + λ3 + λ4

λ12λ13λ14
e−iLλ1 +

λ1 + λ3 + λ4

λ21λ23λ24
e−iLλ2

+
λ1 + λ2 + λ4

λ31λ32λ34
e−iLλ3 +

λ1 + λ2 + λ3

λ41λ42λ43
e−iLλ4

)
,

a3 =
−i
L3

(
1

λ12λ13λ14
e−iLλ1 +

1
λ21λ23λ24

e−iLλ2

+
1

λ31λ32λ34
e−iLλ3 +

1
λ41λ42λ43

e−iLλ4

)
,

where λab ≡ λa −λb. Inserting these results into (47), one
can find the time-evolution operator in terms of the λas.
For example, the term containing e−iLλ1 is

−
{(
λ2λ3λ4I − (λ2λ3 + λ2λ4 + λ3λ4)T

+(λ2 + λ3 + λ4)T 2 − T 3
)

/(
λ1

3 − (λ2 + λ3 + λ4)λ1
2 − (λ2λ3 + λ2λ4 + λ3λ4)λ1

−λ2λ3λ4

)}
e−iLλ1 . (48)

Using the relations of the coefficients and solutions for the
biquadratic equations,

λ1 + λ2 + λ3 + λ4 = −c3 = 0, (49)
λ1λ2 + λ2λ3 + λ3λ4 + λ4λ1 + λ1λ3 + λ2λ4 = c2, (50)

λ1λ2λ3 + λ2λ3λ4 + λ1λ2λ4 + λ1λ3λ4 = −c1, (51)
λ1λ2λ3λ4 = c0, (52)

(48) can be written as

(c1 + c2λ1 + λ1
3)I + (c2 + λ1

2)T + λ1T
2 + T 3

4λ1
3 + c1 + 2c2λ1

e−iLλ1 .

(53)
Therefore, the matrix e−iTL is given by

e−iTL =
4∑

a=1

Bae−iLλa , (54)

Ba ≡ (c1 + c2λa + λa
3)I + (c2 + λa

2)T + λaT
2 + T 3

4λa
3 + c1 + 2c2λa

.

(55)

The time-evolution operator in the mass eigenstate is de-
rived by

Um(L) = e−iHmL = φ

4∑
a=1

Bae−iLλa . (56)
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Using the mixing matrix U , the time-evolution operator
in the flavor eigenstate is given by

Uf (L) = e−iHf L = Ue−iHmLU−1 = φ

4∑
a=1

B̃ae−iLλa , (57)

B̃a ≡ UBaU
−1 (58)

=
(c1 + c2λa + λa

3)I + (c2 + λa
2)T̃ + λaT̃

2 + T̃ 3

4λa
3 + c1 + 2c2λa

,

where T̃ ≡ UTU−1.

3.5 Transition probabilities in matter

The probability amplitude is defined by

Aαβ ≡ 〈β|Uf (L)|α〉, α, β = e, µ, τ, s. (59)

Inserting (57) into (59) the probability amplitude becomes

Aαβ = φ

4∑
a=1

˜(Ba)αβe−iLλa , (60)

˜(Ba)αβ =
{(

(c1 + c2λa + λa
3)δαβ + (c2 + λa

2)T̃αβ (61)

+ λa
2(T̃ 2)αβ + (T̃ 3)αβ

)/(
4λa

3 + c1 + 2c2λa

)}
,

where

〈α|I|β〉 = δαβ , 〈α|T̃ |β〉 = T̃αβ , 〈α|T̃ 2|β〉 = (T̃ 2)αβ ,

〈α|T̃ 3|β〉 = (T̃ 3)αβ . (62)

Here δαβ , T̃αβ , (T̃ 2)αβ and (T̃ 3)αβ are all symmetric.
The probability of the transition from the neutrino flavor
α to the neutrino flavor β is defined by

Pαβ ≡ |Aαβ |2 = Aαβ
∗Aαβ . (63)

Using the definition of the probability amplitude (59), one
finds

Pαβ =
4∑

a=1

4∑
b=1

˜(Ba)αβ
˜(Bb)αβe−iL(λa−λb), (64)

where the symmetry of T leads to Pαβ = Pβα.
The probabilities for the oscillations in vacuum are

given by setting Ae = An = 0 in the definition of the
probability amplitude. From (24), one can find

〈b|Um(L)|a〉 = 〈b|e−iHmL|a〉 = 〈b|e−iH0L|a〉 = e−iEaLδab,

a, b = 1, 2, 3, 4,

where Hm

∣∣
Ae=0,An=0 = H0. Setting the following param-

eters:

xab ≡ 1
2
EabL,

δαβ =
∑

a

Uαa
2Uβa

2 + 2
∑
a<b

UαaUβaUαbUβb, (65)

the probability amplitude Aαβ and the probability Pαβ of
the transition are given by

Aαβ = 〈β|Uf (L)|α〉 = 〈β|Ue−iHmLU−1|α〉

=
4∑

a=1

UαaUβae−iEaL, (66)

Pαβ = δαβ − 4
∑
a<b

UαaUβaUαbUβb sin2 xab. (67)

The expression (57) gives the relations at L = 0:

φ = e−iLtrHm/4
∣∣
L=0 = 1, I = UU−1 =

4∑
a=1

B̃a,

δαβ = 〈α|I|β〉 =
4∑

a=1

˜(Ba)αβ .

Then we can rewrite the probabilities (64) for the oscilla-
tions in matter in a form analogous to (67) in the vacuum:

Pαβ = δαβ − 4
3∑

a=1

4∑
b=a+1

˜(Ba)αβ
˜(Bb)αβ sin2 x̃ab, (68)

where
x̃ab =

L

2
(λa − λb). (69)

If one sets α �= β, then it is written as

Pαβ(α �= β) = −4
3∑

a=1

4∑
b=a+1

˜(Ca)αβ
˜(Cb)αβ sin2 x̃ab, (70)

˜(Ca)αβ ≡ (c2 + λa
2)T̃αβ + λa(T̃ 2)αβ + (T̃ 3)αβ

4λa
3 + c1 + 2c2λa

. (71)

From unitarity, (68) gives the relations

Pee + Peµ + Peτ + Pes = 1, (72)
Pµe + Pµµ + Pµτ + Pµs = 1, (73)
Pτe + Pτµ + Pττ + Pτs = 1, (74)
Pse + Psµ + Psτ + Pss = 1, (75)

where

Peµ = Pµe, Peτ = Pτe, Pµτ = Pτµ, Pes = Pse,

Pµs = Psµ, Pτs = Psτ . (76)

Hence, there are only six independent transition probabil-
ities.

4 Four-neutrino oscillations in matter

We apply some results obtained in the previous section
to the four-neutrino oscillation models. The probability
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Fig. 1a,b. Two mass patterns of the four-neutrino schemes.
a (3 + 1)-scheme, b (2 + 2)-scheme

(68) for the transition of a four-neutrino oscillation in
matter contains the neutrino energy differences Eab =
Ea − Eb (a, b = 1, 2, 3, 4) in vacuum. These energy dif-
ferences are approximately given by the matter mass dif-
ferences ∆m2

ab = ma
2 −mb

2, which are well-known quan-
tities in various kinds of the neutrino experiments. From
the on-shell condition (13),

∆mab
2 = ma

2 −mb
2 = Ea

2 − Eb
2 = (Ea − Eb)(Ea + Eb)

= 2Eab
Ea + Eb

2
. (77)

Now, we assume the average E of the neutrino energies is
about 10 GeV:

E =
E1 + E2 + E3 + E4

4
∼ 10 GeV, (78)

which corresponds to the neutrino energy used in [15]. One
defines the difference δ between two kinds of averages of
two neutrino energies, e.g., the average (E1 + E2)/2 of
the neutrino #1 and #2 and the average (E3 + E4)/2 of
the neutrino #3 and #4. We assume that the difference
δ = (E3 + E4)/2 − (E1 + E2)/2 is about 1 eV which is
estimated from the result of the LSND experiment. Then

E =

E1 + E2

2
+
E3 + E4

2
2

=
(
E1 + E2

2

)
+
δ

2
.

It is found for δ 	 E that

Eab 
 ∆mab
2

2E
. (79)

In a four-neutrino oscillation analysis, there are three
kinds of mass squared differences. They are used as the
parameters in the solar and atmospheric oscillations and
the LSND experiment, which are represented by ∆m2

solar,
∆m2

atm and ∆m2
LSND, respectively. Using these mass

squared differences, one can consider several distinct types
of mass patterns [13]. They are classified into the so-called
(3+1)-scheme and the (2+2)-scheme. We concentrate the
discussion on two of the several mass patterns in Fig. 1.
The phenomenology and the mixing matrix depend on the
type of the mass schemes.

4.1 (3 + 1)-scheme

We assume the mass patterns shown in Fig. 1a, in which
there are three close masses and one distinct mass. Let
m4 and ∆m2

43 be the distinct mass and the largest mass
squared difference, respectively.

First, three kinds of neutrino mass squared difference
are put as follows [15,17]:

∆m2
21 = ∆m2

solar 
 10−4 eV2, (80)
∆m2

32 = ∆m2
atm 
 10−3 eV2, (81)

∆m2
41 = ∆m2

LSND 
 1 eV2. (82)

Then the energy differences Eab are expressed by

E21 
 ∆m2
21

2E
, E32 
 ∆m2

32

2E
, E41 
 ∆m2

41

2E
,

E31 = E32 + E21, E42 = E41 − E21,

E43 = E41 − E31, (83)

where we suppose that the average E of the neutrino en-
ergies is 10 GeV.

Next, we consider the approximate mixing matrix for
the (3 + 1)-scheme [17]:



νe

νµ

ντ

νs


 =




1√
2

cos ε
1√
2

cos ε 0 sin ε

−1
2

1
2

1√
2

0

1
2

−1
2

1√
2

0

−1√
2

sin ε
−1√

2
sin ε 0 cos ε






ν1
ν2
ν3
ν4


 , (84)

where ε is small: 0 ≤ ε ≤ 0.1. Here the 3 × 3 sub-matrix
that describes the mixing of the three active neutrinos has
the bimaximal form. The mixing matrix of (84) is given
from (11) by taking

θ12 =
π

4
, θ23 =

π

4
, θ13 = 0, θ14 = ε, θ24 = 0,

θ34 = 0. (85)

As an illustration of the resonance phenomena, the en-
ergy differences |λa −λb| (a, b = 1, 2, 3, 4, a �= b) are plot-
ted as a function of the matter density A in Fig. 2. Here
we assume that the electron number density Ne is equal to
the neutral particle number density Nn: Ne = Nn. That
is, Ae = A and An = A/2 in (22) and (23). Note that λas
are the effective neutrino energies in matter. In Fig. 2, the
resonances occur when the energy levels in the presence
of matter approach the values of each other.

The transition probabilities (68) for the neutrino oscil-
lations in matter as functions of the matter density A are
shown in Fig. 3. They are some remarkable results show-
ing the effects of the sterile neutrino. Here, we set the
parameter η = 1. The parameter η is defined by L/E =
η × (2R/10 GeV) = η × 6.46 × 103 eV−2, where 2R is the
diameter of the earth: R = 3.23 × 1013 eV−1 = 6378 km.

From Fig. 3, the following results can be derived. If
there is a little mixing of the neutrino #1 and #4 in
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Fig. 2. The difference |λa − λb| (a, b =
1, 2, 3, 4, a �= b) as a function of the
matter density A for the (3+1)-scheme,
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Fig. 3. The transition probabilities
Pee, Pes and Pss as a function of the
matter density A for the (3+1)-scheme,
where θ12 = π/4, θ23 = π/4, θ13 = 0,
θ14 = ε, θ24 = 0, θ34 = 0, ∆m2

21 �
10−4 eV2, ∆m2

32 � 10−3 eV2, ∆m2
41 �

1 eV2, E = 10 GeV and L/E = 6.46 ×
103 eV−2. The solid and broken lines
show the transition probabilities for
ε = 0.1, 0, respectively

the neutrino mass states, i.e., ε �= 0, the fourth- (sterile)
neutrino effects appear as a resonance. For example, the
probability Pee has a little transition beyond the matter
density A ∼ 10−14 eV and a sharp drop at A ∼ 10−10 eV.

4.2 (2 + 2)-scheme

The mass pattern about the (2 + 2)-scheme is shown in
Fig. 1b. We assume that both mass differences of the νe

and νs and of the νµ and ντ are small. The three kinds of
neutrino mass squared differences are put as follows:

∆m2
21 = ∆m2

LSND 
 1 eV2, (86)
∆m2

32 = ∆m2
atm 
 10−3 eV2, (87)

∆m2
41 = ∆m2

solar 
 10−4 eV2, (88)

where the average E of the neutrino energies is treated as
10 GeV.

The approximate mixing matrix for the (2+2)-scheme
[17] is



νe

νµ

ντ

νs


=




1√
2

cos ε
1√
2

sin ε 0
1√
2

− 1√
2

sin ε
1√
2

cos ε
1√
2

0

1√
2

sin ε − 1√
2

cos ε
1√
2

0

− 1√
2

cos ε − 1√
2

sin ε 0
1√
2






ν1
ν2
ν3
ν4


 , (89)

where ε is supposed to be small: 0 ≤ ε ≤ 0.1. These pa-
rameters resemble those in [17], except for θ13 = 0. The
mixing matrix in (89) for the (2+2)-scheme is given from
(11) by taking

θ14 =
π

4
, θ23 =

π

4
, θ12 = ε, θ13 = 0, θ24 = 0,

θ34 = 0. (90)
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Fig. 4. The differences |λa −λb| (a, b =
1, 2, 3, 4) as a function of the matter
density A for the (2+2)-scheme, where
θ14 = π/4, θ23 = π/4, θ12 = ε, θ13 = 0,
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Fig. 5. The transition probabilities
Pee, Peµ and Pss as a function of
the matter density A for the (2 + 2)-
scheme, where θ14 = π/4, θ23 = π/4,
θ12 = ε, θ13 = 0, θ24 = 0, θ34 = 0,
∆m2

21 � 1 eV2, ∆m2
32 � 10−3 eV2,

∆m2
41 � 10−4 eV2, E = 10 GeV and

L/E = 6.46 × 103 eV−2. The solid and
broken lines show the transition prob-
abilities for ε = 0.1, 0, respectively

We take η = 1, as shown in the (3 + 1) scheme.
In the (2 + 2)-scheme, the results of the energy differ-

ences |λa −λb| (a, b = 1, 2, 3, 4) are presented in Fig. 4 as a
function of the matter density A. The transition probabil-
ities Pαβ for the neutrino oscillations in matter are shown
in Fig. 5.

We assume that the two mixings between νe and νs

and between νµ and ντ are maximal, and the other four
mixings are minimal; see (90). Some transition probabil-
ities Pαβ are shown in Fig. 5, and Peτ resembles Peµ in
the probability pattern. The transition between two neu-
trinos, of which the masses are clearly distinguished from
each other, occurs beyond A ∼ 5 × 10−11 eV.

5 Discussion

The main result of our analysis is given by the time-
evolution operator (57) for the four neutrinos in matter.

The time-evolution operator (57) in the flavor eigenstate
is expressed as a finite sum of elementary functions in the
matrix elements of the Hamiltonian (24). The transition
probabilities in matter have been given by (68). We also
have analyzed the matter effects of the transition prob-
abilities, assuming that there are four kinds of neutrinos
and that the fourth (sterile) neutrino has a little mixing
with the other neutrinos.

The resonance between an active neutrino (νe, νµ or
ντ ) and the sterile neutrino νs occurs at the matter density
A 
 10−10 eV. Is this matter density realistic? We consider
about the density of the sun (see Appendix A). Using a
solar model [20], the electron matter densityA in the sun is
1.06×10−11 eV at the center of the sun and 2.78×10−16 eV
at the surface of the sun, respectively. The average of the
electron matter density in the sun is 1.40×10−13 eV. Thus,
the electron matter density in the sun has values from
10−16 eV to 10−11 eV.
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Fig. 6. The surviving probabilities Pss of the sterile neutrino
transition as a function of the rate η for the (3 + 1)-scheme
and the (2 + 2)-scheme, where L/E = η × 6.46 × 103 eV−2.
We compare Pss at two kinds of the matter densities for A =
1.40 × 10−13 [eV] (the broken line) and A = 10−10 [eV] (the
solid line). The bold line is a 10-point running average of Pss

at the matter density for A = 10−10 [eV]

Table 1. The electron matter densities of the sun and the
earth. The value of A at x = R/Rsun = 0.41 corresponds to
the average density in the sun. The mass density ρ is shown
as ρ = 2000meNe, where me is the electron mass, and we put
the ratio of the electron mass to the nucleon mass 1 : 2000. We
assume that the density in the earth is 5.52 g/cm3

A [eV] Ne [1/cm3] ρ [g/cm3]

R/Rsun = 0 1.06 ×10−11 5.91 ×1025 108
R/Rsun = 0.41 1.40 ×10−13 7.82 ×1023 1.42
R/Rsun = 1 2.78 ×10−16 1.55 ×1021 2.82 ×10−2

the earth 5.44 ×10−13 3.03 ×1024 5.52

Our result A 
 10−10 eV, at which the four-neutrino
resonance occurs, is very large. Therefore, one may not
observe the sterile neutrino resonance actually, even if it
exists. To detect the fourth-neutrino resonance, one needs
matter of which the density is about 10−10 eV.

In this paper, we set the neutrino energy to 10 GeV.
For the other neutrino energies, the lower neutrino energy
is reduced, the higher the density to observe the reso-
nance between an active and sterile neutrinos becomes.
Conversely, in order to find the resonance of the sterile
neutrino in low density matter, very high energy neutri-
nos are necessary.

The average of the electron matter density in the earth
is about 4.92 × 10−13 eV (see Appendix A). This is of the
same order as the matter density of the sun. So it will be
difficult to find the resonance of the sterile neutrino near
the earth.

Figure 6 shows the transition probability Pss, which is
the sterile neutrino surviving probability, as a function of
the parameter η for the (3 + 1)-scheme and the (2 + 2)-
scheme. From Fig. 6, the sterile neutrino transition occurs
for η > 10−4.

The four-neutrino model will be tested more closely by
the result of the upcoming experiments. In this paper, the
possibility of a transition among four neutrino flavors in
matter is analytically given. The transition from an active
neutrino to a sterile one may be observed if the neutrino
passes through matter which has a very high density. In
the same condition, the reverse transition may occur. The
above argument about the transition probability for four-
neutrino oscillations tells that we may not actually see
the sterile neutrino resonance, even if the sterile neutrino
exists.

Acknowledgements. The authors are grateful to Professor T.
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Appendix

A Electron number density
in the natural system of units

In this paper, we refer to [19] for the physical constants.
The electron number density Ne is connected with the
matter density A by (22). Using the Fermi weak coupling
constant GF/(�c)

3 = 1.17 × 10−5[GeV−2], we have

A[eV] =
√

2GFNe

= 1.27 × 10−43[eV · m3] ·Ne[1/m3], (A1)

where �c = 197[MeV fm].
We discuss the matter density in the sun, using a solar

model [20]. From the model, the electron number density
Ne depends on the distance R from the center of the sun:

Ne(x) = 98.19 NAe−10.55x [cm−3], x ≡ R

Rsun
, (A2)

where NA = 6.02 × 1023 and Rsun are the Avogadro con-
stant and the radius of the sun, respectively.

In Table 1, the electron matter densities of the sun and
the earth are listed. And we assume that the ratio of the
electron mass to the nucleon mass is 1 : 2000, where the
mass of electron is 9.11 × 10−31[kg]. From Table 1, the
electron number density in the sun has the values from
10−16 eV to 10−11 eV.
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