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Abstract. We analytically derive the transition probabilities for four-neutrino oscillations in matter. The
time-evolution operator giving the neutrino oscillations is expressed by a finite sum of terms up to the
third power of the Hamiltonian in a matrix form, using the Cayley—Hamilton theorem. The result of the
computation for the probabilities in some mass patterns tells us that it is actually difficult to observe the
resonance between one of the three active neutrinos and the fourth (sterile) neutrino near the earth, even

if the fourth neutrino exists.

1 Introduction

A neutrino oscillation is a transition among neutrino fla-
vors. Several types of the observations tell us that neutrino
oscillations occur [1-8]. They are classified in solar, atmo-
spheric and LSND experiments.

The mass squared differences are the parameters show-
ing the neutrino oscillations. In order to describe three
kinds of neutrino experiments within one framework, three
kinds of mass squared differences are needed. Therefore
we consider the four-neutrino oscillation, where the fourth
neutrino does not have the weak interaction. Three active
neutrino flavors (ve,v,,v,) interact with leptons in the
weak interaction. So the fourth neutrino is called a sterile
neutrino (vs).

Recent analysis of experiments and observations disfa-
vors the four neutrino flavors [9,10]. The possibility of the
oscillations v. — v, and v, — v, are strongly excluded
by the analysis. However, the result of the LSND experi-
ment causes the maximum of the three mass squared dif-
ferences, and gives grounds for four-neutrino models. The
upcoming MiniBooNE experiments [11] may lead to a con-
clusion about this discrepancy. Whatever conclusion the
experiment leads to, it is useful to consider the neutrino
oscillations with the sterile neutrino in conditions differ-
ent from that of the experiment. We calculate the matter
effects for the four-neutrino oscillation in the analytical
formalism, irrespective of the concrete data of recent ex-
periments. The result of the calculation will give a new
point of view of the four neutrino flavors.

The neutrino oscillation pattern in vacuum can get
modified when the neutrinos pass through matter. This
is known as the Mikheyev—Smirnov—Wolfenstein (MSW)
effect [12], which can be described by an effective Hamilto-
nian. The interaction with the neutral currents occurs for
three active neutrinos. Thus, for the three active neutri-
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nos, one does not need to consider the interaction with the
neutral currents [13]. But the sterile neutrino has neither
the charged- nor the neutral-current interactions. This
means that one needs to consider the effect of the matter
interacting with the sterile neutrino and to introduce the
4 x4 mixing matrix of four neutrinos which is an extension
of the 3 x 3 Maki-Nakagawa—Sakata (MNS) matrix [14].

Analytical calculations of active three-neutrino oscil-
lations in matter have been performed [15]. In this article,
we derive analytically the transition probabilities for four-
neutrino oscillations. Our calculations include the effects
of the interaction with charged and neutral currents.

The outline of the article is as follows. In Sect. 2, two
kinds of bases to express four-neutrino states are intro-
duced. These bases are connected by a mixing matrix.
To describe neutrino oscillations in matter, the effective
Hamiltonian with a charged current and a neutral current
is introduced. In Sect. 3, we calculate the transition prob-
abilities from the effective Hamiltonian. In order to derive
the transition probabilities, we make use of the Cayley—
Hamilton theorem and the formula for the root of the bi-
quadratic equation. In Sect. 4, the transition probabilities
are concretely computed in two cases of the four-neutrino
oscillation schemes. Finally, in Sect. 5, we discuss the ef-
fects of four-neutrino oscillations in matter.

2 Formalism
2.1 Two bases and the mixing matrix

Neutrinos are produced in the flavor eigenstates |v,) (o =
e, i, T, s). Between the source and the detector, the neutri-
nos evolve as mass eigenstates |v,) (a = 1,2,3,4). There
are two kinds of eigenstates: |v,) and |v,). These eigen-
states are defined by neutrino fields v, and v, correspond-
ing to each eigenstate: v1|0) = |v), |va) = |a), |va) = |a),
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where the vacuum state is given by |0). In the present Uei Uz Ueg Ues
analysis, we will use the plane wave approximation of Uit Upz Upz Upa
the fields. In this approximation, the neutrino flavor field U= (Uaa) = Upy Uny Uy Uy |7 (6)

Vq is expressed by a linear combination of neutrino mass

fields v,:
4
Vo = Z Uaal/aa
a=1

where U is a 4 x 4 unitary matrix with the elements Ug,.
If we write this relation in the neutrino eigenstates, then

4
la) =) Usala).
a=1

An arbitrary neutrino state v is expressed in both the
flavor and mass bases by

> Yl = >

4
Ya Y Usdla)
a=e,l,T,s a=e,[,T,s a=1

4 4
Z( 3 @baU;a) ja) =Y tala),  (3)

a=1 \a=e,u,7,s
where 1, and 1, are the components of ¥ of the flavor
eigenstate basis and the mass eigenstate basis, respec-
tively. They are related:
Y Uit

wa =
a=e,1,T,s

(1)

(2)

(8

(4)

If we define the matrix elements by

we djl
_ _ | Y _ | Y2
wf - (7/)04) - 77[17— ) wm = (wa) - 1/}3 ) (5)

ws 1/}4

Usl Us2 Us3 Us4

the relation between the flavor and the mass eigenstates
is

Ve Uel UeZ UeS Ue4 1551

vy _ Up,l ng Uﬂg U,J4 %] (7)
Vr UTl U‘r2 UT3 U‘r4 Vs ’

Vs Usl U52 Us3 Us4 V4

The unitary matrix U is the mixing matrix of four neu-
trinos. There are six mixing angles and three phases that
are parameters of U, in the case of four neutrinos. In this
analysis, we ignore the C'P violation by putting the phases
equal to zero. Then U is a real orthogonal matrix [15].
A parameterization for U = U(612, 613, 614,023, 024,
034) is given by
U = Us4U24U14Us3U13U712, (8)
where the matrix elements are
(Uij) gy = dab + (Cij — 1) (8iabib + jadjp)
+ Si (00056 — 85adin),
Cij = COS 91‘]‘,

(9)
(10)

Sij = sin Qij,

and the mixing angles 912, 6‘13, 914, 923, 924, 934 [16, 17] By
this definition, the mixing matrix becomes (11) (see (11)
on top of the page).

2.2 Hamiltonian in matter

In the mass eigenstate basis, the Hamiltonian H partici-

pating in the propagation of neutrinos in vacuum is given
by
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Ey 0 00
0 E; O O
= 12
HO 0 0 E3 0 ) ( )
0 0 0 Ey

where E, (a = 1,2,3,4) are the energies of the neutrino
mass eigenstates |a) with mass my:

E, = v/my,2+ p2.

Here and hereafter we assume the momentum p to be the
same for all mass eigenstates.

There are two kinds of additional potentials for de-
scribing the interactions between neutrinos and matter.
One is the interaction of the charged particles (electrons)
and its neutrino v,:

(13)

V. = V2Gr diag(N,,0,0,0). (14)

The other is the interaction of the neutral particles (e.g.
the neutron) and active neutrinos (ve, v, V7 ):

Vio = VEG ding (3N, 3 N ~3N0) . (19
where G, N, and N,, are the Fermi weak coupling con-
stant, the electron number density and the neutral parti-
cle number density, respectively. Note that we assume the
particle number densities to be constant throughout the
matter where the neutrinos are propagating.

The interaction term (15) can be separated into two

parts as follows:
VnO = Vn + V/7

1
V,, = V2Gr diag (0,0707+2Nn) ,

(16)
(17)

1 1

’_ o (—in iy Ly 1
V' = V2Gy dlag( 5 Ny =5 N, =5 Ny =5 N . (18)

These interaction terms are written by the flavor eigen-
state basis. Therefore the interaction terms in the flavor
eigenstate basis must be transformed into those in the
mass eigenstate basis by the mixing matrix U. The inter-
action terms in the mass eigenstate basis are

U2t UaUes UaUes UetUes
UaUer  UZy UeaUes UeaUey
UesUer UesUez U2y UesUey
UesUer UeaUes UesUes U2,

U2 UaUs UaUs UaUs
UUsi UZL  UgpUss UgpaUsy
UssUs1 UssUsz U UgsUsy
UsaUs1 UsaUsg UyUsz U2
U 'WWV'U = -A,1,

U'W,U = A,

UV, U = A, . (20)

(21)

where [ is the 4 x 4 unit matrix, and the matter densities
A, A, and A are defined by

A. = V2GgN, = A, (22)
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1 1 N,
_GpN, = ~A°".
V2 TN,

Thus, the Hamiltonian in the case when the neutrinos
propagate in matter is

A, = (23)

Hom =Ho + U VU+U WU - AT (24)

3 Calculations
of the neutrino transition probabilities

The transition probabilities are represented by the time-
evolution operator. In the flavor state basis, the unitary
transformation from the initial state ¢ #(t = 0) to the final
state ¥ ,(t) is given by the operator

Us(t) = Us(2,0), (25)
where Uy (t2,t1) is the time-evolution operator from time
t1 to ty in the flavor state basis. The Hamiltonian Haavor
in the flavor state basis is represented by using the mixing
matrix U and the Hamiltonian #,, in the mass state basis:

7_[ﬁavor = UHmU_1~ (26)

The Schrodinger equation in the mass eigenstate basis is

. d _

1a¢m(t) = Hmm(t). (27)
Equation (27) has the solution

Y (t) = 7T, 0), (28)

where e Hm? is the time-evolution operator. Inserting ¢ =

L into (28), the solution of the Schrédinger equation (27)
is

¢m(L) = "r/)m(t) i = eilHML¢m(0) = Um(L)wm(O)v
(29)
where L stands for the distance through which neutrinos
run in the time ¢, because the speed of neutrinos is almost
equal to that of light.
The neutrino state ¢ (L) at ¢ = L in the flavor state
basis is expressed by

by (L) = Uhm(L)
— Uefi’Hme',n(O)
= Ue™ " tU 4 (0)
= Uf(L)wf(O)

3.1 Traceless matrix T

In order to find the explicit form of the time-evolution op-
erator e~ "tm? which is the exponential of the matrix, the
Hamiltonian in the matrix form is separated into diagonal
and traceless matrices. The trace of the matrix H,, in (24)
is

trHTn = E1 —+ EQ + E3 + E4 + Ae - 3Ana (31)
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where we use the unitarity conditions, e.g. U612 + U622 +
Ues® + Ues® = 1.

An arbitrary N x N matrix M can always be written
as

1
M = MO + N(tI‘M)IN, (32)

where My and Iy are N x N traceless and unit matrices,

respectively. Note that trMy = 0. Then the 4 x 4 matrix
H., can be written as

1
Hm =T + Z(ter)I7 (33)

where I, = I and the matrix T is traceless. The matrix T
can be written as

1
T =Ho— 1(E1 +Ey+Es +E)I+U 'V U+U'V,U

1
- Z(Ae + An)I
Eioa 0 0 0
_1 0 FEoi34 O 0
4 0 0 Esia O
0 0 0 FEyi23
1
U612 - Z Uel UeZ Uel UeS Ueer4
1
Ue2Uel U622 - 7 U62Ue3 U€2U64
+ Ae 4 1
UeSUel U€3U€2 U€32 - 1 Ue3Ue4
1
Ue4Uel Ue4U62 U64U€3 Ue42 - Z
1
U812 - i U81U82 U51U83 UslUs4
1
U52U51 U522 - 7 U52U53 U52U34
+ A, 4 1 . (34)
UsBUsl US3U52 Us32 - Z Us3Us4
1
US4U31 US4US2 US4U53 Us42 - Z

where Egp, (a,b=1,2,3,4,a # b) and Ej jmp (k,I,m,n =
1,2,3,4) are defined by

Ew=E.—Ep, Eiimn=Ew+ Egm + Egn, (35)

respectively. The energy differences E,;, are not linearly
independent, since they obey the following relations:

Ey = —FEy, FEia+ Eo3+ E31 =0,
Eyo+FEy+Ey =0, Ei3+E3y+ Eyn =0.

Thus, only three of the F ;s are linearly independent.

Therefore the time-evolution operator e~ =t can be
rewritten using the traceless matrix 7"
Um(L) — efiHmL —_ ¢efiTL’ (36)

i(trH )L /4

where ¢ = e~ is a phase factor.
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3.2 The Cayley—Hamilton theorem

In order to find the concrete form of the definite matrix
e 'L we use the Cayley-Hamilton theorem. The expo-
nential of the 4 x4 matrix T can be expressed by an infinite
series:

e Tl = kol + kT + koT? + ksT? + kyT* + -+ (37)
where k, = (—iL)"/n! (n = 1,2,3,4,---). The Cayley—
Hamilton theorem implies that the eigenvalue A in the
characteristic equation

det(T — ML) = A +e3A3 + oA + A +co =0 (38)
of the matrix T" can be replaced with T to give
T4 —+ CgT‘3 —+ CQT2 —+ ClT + Co — 0, (39)

where the ¢; (j = 0,1,2,3) are coefficients. Using (39)
repeatedly, the matrix e 7% can formally be written in
the form
e TL — qoI + a1 T + asT? + asT?, (40)
where the a; (j = 0,1,2,3) are coefficients which differ
from k,, and c; in general.
Because T is a definite matrix, we need to find the coef-

ficients a; explicitly in order to obtain the matrix e iTL,
If the characteristic equation (38) has four solutions Ag

(k =1,2,3,4), one can write the eigenvalues of e71T'L as
e ML = g0+ ar \p + as g2 + ashgS. (41)
By defining the following matrices,
e—iLA1
e—iLA2
€= | o-ilxs |-
e—iLA4
1 —iL\ —L2X\% HL3)®
Ao | L EA =LA HLOA
| 1 —iLAs —L2As% HLANE |
1 —iL\g —L2X\g* HL3)®
ao
as
= , 42
a | 2)
as
(41) is written in the matrix form e = Aa. Then one
obtains the coefficient a,
a=A""e. (43)

Therefore, we should find the eigenvalues A\ of the matrix
T in order to know a.
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3.3 Characteristic equation of the matrix T

In order to obtain the eigenvalues A\ of the matrix T', one
must solve the characteristic equation

T11 - A T12 T13 T14
Ty Tho — A Thg To4
T3y T3 T33— X T3y
Ty Tyo Tys Taa — A

=AM 4N F e+ d+ e =0. (44)

The coefficient ¢g is the determinant of T, ¢; and ¢y are
expressed by the sum of the cofactors of the diagonal ele-
ments of T, and c3 is given by the trace of T,

co = det T,
c1 = —cof T(1) — cof T(g) — cof T3y — cof T{y),
co = cof T(lg) + cof T(13) + cof T(14) + cof T(23)
+ cof T{a4) + cof T(34),
c3 = —trT'=0,
where the cofactors cof T,y (p = 1,---,4) of T, and

cof Trg) (1 <7 < s < 4) of Tp and Ty, are determinants
of 3 x 3 and 2 x 2 matrices, respectively, e.g.

4
cof T(2) = E : €p1p2p3pa Tlpl 52]02 T3P3T4;D47
P1,P2,p3,p4=1
4
cof T(13) = E : €p1papspa 51171 Top, 63p3 Typ,-

P1,P2,P3,Pa=1

The four roots of the biquadratic equation (44) are
given from the solutions of the two quadratic equations [18]

t to?
Xzi\/t0702X+50+\/§0 —co=0, (45

where tg is one of the real roots of the cubic equation
3 — Cgtz — 4ot + 4eges — 812 =0. (46)

Note that c3 = —trT = 0 due to the definition of T'.

3.4 Calculation of time-evolution operator

From (36) and (40), the time-evolution operator is written
as

Un(L) = e Hmt = ge=TF (47)
= ¢ [aol + (—iLT)ay — L*T?az +iL*T?aj] .
The coefficients a; are given by (43), as follows:

)\2)\3)\4 /\1)\3>\4

o = — —iLA iLXs
A12A13A14 A21A23A24
MM iy Mdeds g,

A31A32A34 Aa1A4243
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i /A2 Ao+ Azha
a1_1<23+ 24 + 3 L

L A12A13A14
L MM+ Ao i,
A21A23 04
L A A+ A i,
A31A32A34
n AMA2 + A1A3 + As A3 e—iL>\4>
Aq1A42A43 7
as = i ()\24')\34‘)\46_@)\1 )\1+)\3+>\4e_iL)\2
L2\ A2Ai3Ais A21 2324
n AL+ A2+ /\4efiL)\3 A1+ A2+ A3 eiL)\4>
A31A32A34 Aq1A42 43 ’
_ i 1 LM\ 1 “iLAs
@I (mmme a1 Azahas

1 —iLA; 1
+ - 3 -
A31A32A34 A11Aa2 M43

e—lL)\4> ,

where A\ = Ay — \p. Inserting these results into (47), one
can find the time-evolution operator in terms of the A,s.
For example, the term containing e 1M is

—{ (A2A3A4I — (Mods 4 Aods - AT
+()\2 + A3+ )\4)T2 — Tg)
/(Af o+ A A)M2 — (ads 4+ Aoda + AsAa) N

—)\2)\3)\4) }e*i“l.

Using the relations of the coefficients and solutions for the
biquadratic equations,

(48)

A+ A+ A3+ A =—c3=0,

A1A2 + A2A3 + A3Ag + A1 + AAz + Ae Ay = ca,
)\1)\2)\3 + /\2)\3)\4 + )\1/\2/\4 + )\1)\3/\4 = —(C1,

A1A2A3A4 = co,

(48) can be written as

(Cl + oA\ + )\13)1 + (02 + )\12)T + /\1T2 + 73 o 1LA
AM2 + o1 4 2c00 .

(53)
Therefore, the matrix e 77 is given by
4
o—iTL _ ZBaefiLAa’ (54)
=1

(c1 4 c2ha + A+ (co + X2)T + A\ T2 + T3

B. .
4)\0, +c + 202)\11

(55)

The time-evolution operator in the mass eigenstate is de-
rived by

4
Un(L) =e Ml = 3" Bie A, (56)
a=1
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Using the mixing matrix U, the time-evolution operator
in the flavor eigenstate is given by

717‘[]0[/

Us(L) = = Ue Hmly—1 (57)

4
=0 Bue

a=1
B,=UB, U} (58)

(e e F AT+ (c2 + AT+ NT2+ T3
B 4)\a3 +c1 + 2¢ca)\,

Y

where T = UTU L.

3.5 Transition probabilities in matter

The probability amplitude is defined by

A = (BIUf(L)]e),
Inserting (57) into (59) the probability amplitude becomes

a,B=e,u,T,s. (59)

4
Aap =0 (Ba)gge ", (60)
a=1
(B~a)a6 = {((cl + 2 + )‘a3)6aﬁ + (62 + /\az)Tozﬁ (61)

22
+ )\0« (T )aﬁ

+ (T?’)aﬂ)/(@a?’ ter+ QCQAG) }

where
(@|B) = bap,  (T|B) = Tup, (T?B) = (T?) 45,
(| T?|8) = (T%) 5. (62)

Here 6,5, Tup, (TQ)QE and (T‘g)aﬂ are all symmetric.
The probability of the transition from the neutrino flavor
« to the neutrino flavor g is defined by

2 *
Pop =|Aap|” = Aap™ Aag. (63)
Using the definition of the probability amplitude (59), one
finds

)age iL(Ag— )’

=3

a=1b=1

(64)

where the symmetry of T" leads to P,g = Pga.

The probabilities for the oscillations in vacuum are
given by setting A. = A, = 0 in the definition of the
probability amplitude. From (24), one can find

(blUR(L)]a) = (le™7mEla) = (ble™ 70 |a) = e 7ot gy,
a,b=1,2,3,4,
where ’Hm‘ A oA —o = Mo Setting the following param-

eters:

1
7EabLa

J]abEQ
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aﬁ = Z Uoza U,Ba + 2 Z UaaUﬁaUabUﬁba (65)
a<b

the probability amplitude A, and the probability
the transition are given by

Paﬁ of

Aap = (BIUs(L)]a) = (BlUe™ U a)
4
= Z UaaUﬁae_iEaL7
Pag = 5aﬁ —4 Z UaaUﬁaUabUﬁb SiIl2 Tab-
a<b
The expression (57) gives the relations at L = 0:

4
=2_Ba
a=1

¢ = WM/ 1 [=pU!

4

dap = (alT|8) =" (B

a=1

Then we can rewrite the probabilities (64) for the oscilla-
tions in matter in a form analogous to (67) in the vacuum:

3 4
Pog = bup — 42 Z @)ap Bb )ap sin®Zqp,  (68)
a=1b=a+1
where
- L
Lab = 5()\& - )\b) (69)

If one sets v # 3, then it is written as

3 4
Pysla#6) = —42 Z (Ca) aﬁ(Cb) Bbm Zab, (70)

a=1b=a+1
- (c2 4+ Xa”)Tap + Xa(T?),5 +
AN+ 1 + 2090,

(Tg)“ﬁ. (71)

From unitarity, (68) gives the relations

P€6+P€;L+PCT+P€S:17
Pue+ Py + Pur + Pus = 1,
PT€+PT/,L+PTT+PTS:1)

A~~~
3 9
-~ W N

= I = =

PS€+PSM+PST+PSS:17 75
where
PQM :PHQ, PeT:PTe, P 7P7—,u7 Py :Psea
ID/LS = Ps;u P‘rs = Lgr- (76)

Hence, there are only six independent transition probabil-
ities.
4 Four-neutrino oscillations in matter

We apply some results obtained in the previous section
to the four-neutrino oscillation models. The probability
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A A
— M4 +ms3
— m2
—t m3
T mQ} Timis
= Lm = Lmg

(a) (b)

Fig. 1la,b. Two mass patterns of the four-neutrino schemes.
a (3 4 1)-scheme, b (2 + 2)-scheme

(68) for the transition of a four-neutrino oscillation in
matter contains the neutrino energy differences E,, =
E, — Ey (a,b = 1,2,3,4) in vacuum. These energy dif-
ferences are approximately given by the matter mass dif-
ferences Amib = mg2 — my2, which are well-known quan-
tities in various kinds of the neutrino experiments. From
the on-shell condition (13),

Amay? = my? —my? = E,2 — By = (B, — Ey)(E, + Ep)
E, + Ey

=2FEq4 2

(77)
Now, we assume the average F of the neutrino energies is
about 10 GeV:

_ Eit+Ey+ E3+ FEy
B 4

E

~ 10GeV, (78)
which corresponds to the neutrino energy used in [15]. One
defines the difference § between two kinds of averages of
two neutrino energies, e.g., the average (E; + E2)/2 of
the neutrino #1 and #2 and the average (E3 + Ey)/2 of
the neutrino #3 and #4. We assume that the difference
0 = (Es+ E4)/2 — (E1 + E3)/2 is about 1eV which is
estimated from the result of the LSND experiment. Then

Ei+FEy, E3+E,

E
2 2 2

It is found for 6 <« E that

AmabQ
E., >~
b 2F

(79)

In a four-neutrino oscillation analysis, there are three
kinds of mass squared differences. They are used as the
parameters in the solar and atmospheric oscillations and
the LSND experiment, which are represented by Am2 .
Am?2,. and AmZgnp, respectively. Using these mass
squared differences, one can consider several distinct types
of mass patterns [13]. They are classified into the so-called
(3+1)-scheme and the (24 2)-scheme. We concentrate the
discussion on two of the several mass patterns in Fig. 1.
The phenomenology and the mixing matrix depend on the
type of the mass schemes.
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4.1 (3 + 1)-scheme

We assume the mass patterns shown in Fig. la, in which
there are three close masses and one distinct mass. Let
my4 and Am?2, be the distinct mass and the largest mass
squared difference, respectively.

First, three kinds of neutrino mass squared difference
are put as follows [15,17]:

Am3, = Am2 |, ~10"*eV?, (80)
Ami, = Am?, ~ 1073 eV?, (81)
Am?, = Amigp ~ 1eV2 (82)

Then the energy differences E,;, are expressed by

Am?u
2F

Am?2
B~ 21

21 2 )
E31 = E33 + Eoy,
Ey3 = By — B3y,

Am?,
~ FEy ~
32 5% 41

By = Ey — Eo,

(83)

where we suppose that the average E of the neutrino en-
ergies is 10 GeV.
Next, we consider the approximate mixing matrix for
the (3 4 1)-scheme [17]:
1

1 .
——cose —cose 0 sine

2 2
Ve V2 1 fl 1 0 141
v 2 2 1)
"= 1 L2 , (84)
Vr il - = 0 V3
Vg . 2 ] 2 \/§ |20
——sine —sine (0 cose
V2 V2

where € is small: 0 < € < 0.1. Here the 3 x 3 sub-matrix
that describes the mixing of the three active neutrinos has
the bimaximal form. The mixing matrix of (84) is given
from (11) by taking

013 =0, 024 =0,

(85)

Y
923 = Z, 014 =€,

As an illustration of the resonance phenomena, the en-
ergy differences |\, — \s| (a,b=1,2,3,4,a # b) are plot-
ted as a function of the matter density A in Fig.2. Here
we assume that the electron number density NV, is equal to
the neutral particle number density N,: N. = N,,. That
is, A, = Aand A, = A/2 in (22) and (23). Note that Ays
are the effective neutrino energies in matter. In Fig. 2, the
resonances occur when the energy levels in the presence
of matter approach the values of each other.

The transition probabilities (68) for the neutrino oscil-
lations in matter as functions of the matter density A are
shown in Fig. 3. They are some remarkable results show-
ing the effects of the sterile neutrino. Here, we set the
parameter n = 1. The parameter n is defined by L/E =
n x (2R/10GeV) = n x 6.46 x 103 eV ~2, where 2R is the
diameter of the earth: R = 3.23 x 103 eV~! = 6378 km.

From Fig. 3, the following results can be derived. If
there is a little mixing of the neutrino #1 and #4 in
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the neutrino mass states, i.e., € # 0, the fourth- (sterile)
neutrino effects appear as a resonance. For example, the
probability P.. has a little transition beyond the matter
density A ~ 1074 eV and a sharp drop at A ~ 10710eV.

4.2 (2 + 2)-scheme

The mass pattern about the (2 + 2)-scheme is shown in
Fig. 1b. We assume that both mass differences of the v,
and v, and of the v, and v; are small. The three kinds of
neutrino mass squared differences are put as follows:

Am3, = Amigp ~ 1eV?,
Am32, = Am?, ~ 1072 eV?,

2 _ 2 104 ay2
Amy; = Ami,, ~ 1077 eV?,

8
8
8

6)
7)
8)

tm

where the average F of the neutrino energies is treated as
10 GeV.

Fig. 2. The difference |\ — Ay| (a,b =
1,2,3,4,a # b) as a function of the
matter density A for the (341)-scheme,
where 912 7T/4, 923 = 7T/4, 913 = 07
914 = €, 024 = 0, 934 = 07 Am%l
107%eV?, Am3, ~ 1072 eV?, Am3,
1eV2, E=10GeV and e = 0.1

~

~

Fig. 3. The transition probabilities
P.., P.s and Pss as a function of the
matter density A for the (3+1)-scheme,
Where 912 = 71'/4, 923 = 71'/4, 913 = O,
O1a = €, 021 = 0, 634 = 0, Am3,
107%eV?, Am3, ~ 107 %eV?, Amj,
1eV? E =10GeV and L/E = 6.46 x
10%eV~2. The solid and broken lines
show the transition probabilities for
e = 0.1, 0, respectively

~

~

The approximate mixing matrix for the (24 2)-scheme

[17] is
1
——cose€
2
Ve 1 .
———sine
Vi | _ 2
Vr ——sine
Vg %
—— cose€

1
—sine 0 i
2 2
1 o 1 0 41
—_cose —
19
Vi . (59
——cose — 0 V3
12 V2 ) vy
———sine 0 —
V2

where € is supposed to be small: 0 < ¢ < 0.1. These pa-
rameters resemble those in [17], except for 613 = 0. The

mixing matrix in (89)

(11) by taking

for the (2 + 2)-scheme is given from

913 = 07 Oo4 = 07

(90)

) 012 =€,
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We take n = 1, as shown in the (3 + 1) scheme.

In the (2 + 2)-scheme, the results of the energy differ-
ences |[A, — Ap| (a,b=1,2,3,4) are presented in Fig. 4 as a
function of the matter density A. The transition probabil-
ities P, for the neutrino oscillations in matter are shown
in Fig. 5.

We assume that the two mixings between v, and v,
and between v, and v, are maximal, and the other four
mixings are minimal; see (90). Some transition probabil-
ities P, are shown in Fig.5, and P, resembles P, in
the probability pattern. The transition between two neu-
trinos, of which the masses are clearly distinguished from
each other, occurs beyond A ~ 5 x 107! eV.

5 Discussion

The main result of our analysis is given by the time-
evolution operator (57) for the four neutrinos in matter.

10

L/E = 6.46 x 10 eV~2. The solid and
broken lines show the transition prob-
abilities for e = 0.1, 0, respectively

10

=

—_

o:
=
=

A(eV)

The time-evolution operator (57) in the flavor eigenstate
is expressed as a finite sum of elementary functions in the
matrix elements of the Hamiltonian (24). The transition
probabilities in matter have been given by (68). We also
have analyzed the matter effects of the transition prob-
abilities, assuming that there are four kinds of neutrinos
and that the fourth (sterile) neutrino has a little mixing
with the other neutrinos.

The resonance between an active neutrino (ve, v, or
v;) and the sterile neutrino v4 occurs at the matter density
A ~ 10710¢V. Is this matter density realistic? We consider
about the density of the sun (see Appendix A). Using a
solar model [20], the electron matter density A in the sun is
1.06x107 1 eV at the center of the sun and 2.78 x 10716 eV
at the surface of the sun, respectively. The average of the
electron matter density in the sun is 1.40x 10~3 eV. Thus,
the electron matter density in the sun has values from
10716eV to 107t eV.
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Fig. 6. The surviving probabilities Pss of the sterile neutrino
transition as a function of the rate n for the (3 + 1)-scheme
and the (2 + 2)-scheme, where L/E = 7 x 6.46 x 10%eV 2.
We compare Pss at two kinds of the matter densities for A =
1.40 x 107** [eV] (the broken line) and A = 107° [eV] (the
solid line). The bold line is a 10-point running average of Pss
at the matter density for A = 1070 [eV]

Table 1. The electron matter densities of the sun and the
earth. The value of A at x = R/Rsun = 0.41 corresponds to
the average density in the sun. The mass density p is shown
as p = 2000meNe, where m. is the electron mass, and we put
the ratio of the electron mass to the nucleon mass 1 : 2000. We
assume that the density in the earth is 5.52 g/cm3

A [eV] N [1/em®]  p [g/cm’]
R/Rsun =0 1.06 x107*  5.91 x10% 108
R/Rsun = 0.41  1.40 x107'*  7.82 x10% 1.42
R/Rsun =1 2.78 x1071%  1.55 x10*' 2.82 x107?
the earth 544 x107'%  3.03 x10* 5.52

Our result A ~ 1071%¢V, at which the four-neutrino
resonance occurs, is very large. Therefore, one may not
observe the sterile neutrino resonance actually, even if it
exists. To detect the fourth-neutrino resonance, one needs
matter of which the density is about 1070 eV.

In this paper, we set the neutrino energy to 10 GeV.
For the other neutrino energies, the lower neutrino energy
is reduced, the higher the density to observe the reso-
nance between an active and sterile neutrinos becomes.
Conversely, in order to find the resonance of the sterile
neutrino in low density matter, very high energy neutri-
NnOS are necessary.

The average of the electron matter density in the earth
is about 4.92 x 10~3 eV (see Appendix A). This is of the
same order as the matter density of the sun. So it will be
difficult to find the resonance of the sterile neutrino near
the earth.

Figure 6 shows the transition probability Pss, which is
the sterile neutrino surviving probability, as a function of
the parameter n for the (3 + 1)-scheme and the (2 + 2)-
scheme. From Fig. 6, the sterile neutrino transition occurs
for n > 1074

Y. Kamo et al.: Analytical calculations of four-neutrino oscillations in matter

The four-neutrino model will be tested more closely by
the result of the upcoming experiments. In this paper, the
possibility of a transition among four neutrino flavors in
matter is analytically given. The transition from an active
neutrino to a sterile one may be observed if the neutrino
passes through matter which has a very high density. In
the same condition, the reverse transition may occur. The
above argument about the transition probability for four-
neutrino oscillations tells that we may not actually see
the sterile neutrino resonance, even if the sterile neutrino
exists.

Acknowledgements. The authors are grateful to Professor T.
Maekawa for valuable suggestions.

Appendix

A Electron number density
in the natural system of units

In this paper, we refer to [19] for the physical constants.
The electron number density N, is connected with the
matter density A by (22). Using the Fermi weak coupling

constant Gy /(hic)® = 1.17 x 1075[GeV 2], we have

AleV] = V2GEN,

=127 x 107%[eV - m?] - N.[1/m?], (A1)

where hic = 197[MeV fm].

We discuss the matter density in the sun, using a solar
model [20]. From the model, the electron number density
N, depends on the distance R from the center of the sun:

R

N.(z) = 98.19 Nae 19257 [cm ™3], =z = JE—

(A2)

where Ny = 6.02 x 10?3 and Ry, are the Avogadro con-
stant and the radius of the sun, respectively.

In Table 1, the electron matter densities of the sun and
the earth are listed. And we assume that the ratio of the
electron mass to the nucleon mass is 1 : 2000, where the
mass of electron is 9.11 x 1073 [kg]. From Table1, the
electron number density in the sun has the values from
10716 eV to 1071 eV.
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